
Journal of Information System, Technology and Engineering

Volume 2, No. 2, pp. 261-268

E-ISSN: 2987-6117

http://gemapublisher.com/index.php/jiste

Received: April 2024

Accepted: May 2024

Published: June 2024

DOI: https://doi.org/10.61487/jiste.v2i2.69

Particle Swarm Optimization-based Linear Regression for
Software Effort Estimation

Puguh Jayadi1, Khairul Adilah binti Ahmad2, Rayhan Zulfitri Dwi Cahyo3, Jofanza Denis

Aldida4

Universitas PGRI Madiun1,3,4, Universitas Negeri Malang1, Universiti Teknologi MARA
Cawangan Kedah2

Correspondence Email: puguh.jayadi@unipma.ac.id1

Abstract
In the context of software effort estimation, this study investigates the use of Particle Swarm
Optimization (PSO)-based Linear Regression to improve estimation accuracy. The main problem faced
is the limitations of standard Linear Regression models in accurately estimating the effort required for
software development projects. This research aims to improve the quality of estimation of software
efforts to optimize resource management and project schedules. The method used was the integration
of PSOs in Linear Regression, which was evaluated using three different COCOMO datasets.
Experimental results show that LR+PSO models consistently outperform standard Linear Regression
with lower MAE, MSE, and RMSE, as well as higher R-squared. In conclusion, integrating PSOs in
Linear Regression effectively improves the estimation accuracy of software efforts, demonstrating great
potential for improving estimation quality in software project management practices.

Keywords: linear regression, particle swarm optimization, software effort estimation, accuracy.

INTRODUCTION
Software effort estimation is an important aspect of software project management,

which directly impacts resource allocation and project scheduling. Linear Regression (LR) has
long been used in software effort estimation practices, but in some cases, these models have
limitations in accurately estimating the effort required (Sharma & Chaudhary, 2020). Several
studies have been conducted to calculate effort in software development with algorithmic
approaches such as Use Case Point, Function Point, and COCOMO (Feizpour et al., 2023;
Kaushik et al., 2016; Park et al., 2016; Silhavy et al., 2023).

 In addition, some studies use Machine Learning to improve accuracy in classification,
estimation, and prediction using various methods, including metaheuristic techniques. For
example, Cho et al. (2017) proposed the use of Particle Swarm Optimization (PSO) algorithms
in Support Vector Machine (SVM) to optimize parameters in classifying Power Distribution
Systems whose results showed a significant improvement in classification accuracy (Cho &
Thom Hoang, 2017). In addition, Chahar et al. (2022) applied Genetic Algorithms and Neural
Networks to software testing, and the results showed consistent improvements in prediction
accuracy (Chahar & Bhatia, 2022). Particle Swarm Optimization (PSO) is a metaheuristic that
has proven effective in solving non-linear optimization problems (Hidayat, 2023; Wu et al.,
2018). Integrating PSO in Linear Regression for software effort estimation promises improved
accuracy and performance of estimation models.

Based on this background, this study aims to answer several research questions about
whether integrating PSO in Linear Regression can improve the accuracy of software effort

about:blank
mailto:puguh.jayadi@unipma.ac.id1

262

DOI: https://doi.org/10.61487/jiste.v2i2.69

estimation. An important part is how the performance of the LR+PSO model compares to the
standard Linear Regression model. This study uses public datasets such as COCOMO81,
COCOMO_Nasa_v1, and COCOMO_Nasa_v2 because these datasets are often used in several
studies on the topic of Software Effort Estimation (Banimustafa, 2018; Hoc et al., 2022; Kumar
& Srinivas, 2023).

This research is expected to significantly contribute to software effort estimation practice
by introducing a new approach that combines Linear Regression (LR) with PSO. The results
of this research can help organizations and practitioners produce more accurate and reliable
estimates of software efforts, thereby minimizing the risk of estimation errors and improving
the efficiency of software project management. A major contribution of this research was the
development of software effort estimation models that leverage the power of PSO to improve
estimation accuracy and performance. In addition, it provides a deeper understanding of
metaheuristic integration in the context of software effort estimation and a comprehensive
comparison between LR+PSO models and standard Linear Regression.

METHOD

This section explains the dataset and the stages used in conducting research. The public
dataset is commonly used in Software Effort Estimation research (Marco et al., 2019, 2023).
Table 1 contains a description of each dataset. The stages of the research are shown in Figure
1.

Table 1. Dataset Description

Dataset Project Feature Min Effort Max Effort

COCOMO81 63 17 5.9 11,400

COCOMO Nasa

v1
60 16 8.4 3,240

COCOMO Nasa

v2
93 17 8.4 8211

 Broadly speaking, the research stages consist of 3 major parts, namely Preprocessing,

Modeling, and Prediction, and the last is Evaluation. In the Processing section, the dataset
ready to be used will be changed to Byte Literals, namely changing from String type to Object
type to prevent errors in subsequent data processing and ensure it is in the appropriate format
when conducting analysis. Data normalization using StandardScaler so that the range of data
to be processed is not too far can cause proportional models. Data sharing enables training
and test models on a single subset (Shafiee, 2023).

Figure 1. Research Step

DOI: https://doi.org/10.61487/jiste.v2i2.69

 In the Modeling and Prediction section, namely making models and making
predictions using Linear Regression (LR) which generally uses the formula:

y = β0 + β1x1 + β2x2 + … + βnxn +ϵ (1)

 Where y is the dependent variable, x1, x2, ... xn is the independent variable, β0, β1, ..., βn
is the regression coefficient, and ε is the error. Linear Regression, as the basis of regression
techniques, assumes the existence of a linear relationship between features and targets.
Meanwhile, the Particle Swarm Optimization (PSO) method, is used to determine parameters
for processing by Linear Regression. PSO was first recognized by Eberhart and Kennedy in
1995 which is one of the metaheuristic methods that serves to help determine the optimization
of a problem (Demidova et al., 2016). PSO is inspired by the behavior of bio-natural (especially
living things later referred to as particles), which cluster (become a swarm of particles) to find
the same goal, with each particle determining its path or the most optimal way and will
eventually be followed by other particles. PSO begins by randomly generating several
solutions of particles, among which will be the optimal value as a solution for the parameter
(Telikani et al., 2022). In general, the formula for PSO is divided into 2, namely Update
Acceleration, and Position Update. For Acceleration Update the formula is:

𝑣𝑖
(𝑡+1)

= 𝑤 ∗ 𝑣𝑖
(𝑡)

+ 𝑐1 ∗ 𝑟1 ∗ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
(𝑡)

) + 𝑐2 ∗ 𝑟2 ∗ (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖
(𝑡)

) (2)

 Where vi(t+1) is the velocity of the particle i at the t+1 iteration. w is the inertial weight
that controls the impact of the previous speed on the current speed. vi(t) is the velocity of
particle i at iteration t. c1 and c2 are acceleration constants that control the influence of particle
distances from Pbest, i and Gbest on particle movement. r1 and r2 is a uniform random number
in a range [0, 1]. Pbest, i is the best position that particle i have achieved so far (Personal best).
Gbest is the best position that has been achieved by the entire herd so far (Global best). xi(

t) is
the position of particle i at iteration t. As for the Acceleration Update formula, it is:

 𝑥𝑖
(𝑡+1)

 = 𝑥𝑖
(𝑡)

+ 𝑣𝑖
(𝑡+1)

 (3)

 Where xi(
t+1) is the position of particle i on the iteration t+1. The essence of PSO is to

update the velocity and position of each particle based on its best personal experience and the
best experience of the herd, hoping to find an optimal global solution to a given problem.
Inertial weight w, and acceleration constant c1 and c2 is a key parameter that affects PSO
performance and is usually determined through experimentation or heuristic settings.
 The Evaluation section uses calculations such as Mean Absolute Error (MAE), Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²) for each model
(Ahmed et al., 2022; Shukla & Kumar, 2021). MAE is the average of the absolute values of the
error between the prediction and the actual value. The formula is:

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1 (4)

 Where yi is the actual value. 𝑦̂𝑖is the predicted value. n is the number of samples. MSE
is the average of the squares of the error between the prediction and the actual value. The
formula is:

𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1 (5)

264

DOI: https://doi.org/10.61487/jiste.v2i2.69

 Where yi is the actual value. is the predicted value. 𝑦̂𝑖n is the number of samples. Root
Mean Squared Error (RMSE) is the square root of the MSE, giving the model error measure in
units equal to the target variable. The formula is:

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1 (6)

 Where yi is the actual value. is the predicted value. 𝑦̂𝑖n is the number of samples. R-
squared (R²) is the proportion of variation in the dependent variable that can be explained by
the independent variable in the regression model. The formula is:

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (7)

 Where yi is the real value. 𝑦̂𝑖 is the predicted value. 𝑦̅𝑖 is the average of the actual
values. n is the number of samples. The R-squared indicates how well the data fits the
regression model. A higher R-squared value indicates that the model can better explain the
output variations.

RESULT AND DISCUSSION

 This study explores the use of Particle Swarm Optimization (PSO) to improve the
performance of Linear Regression (LR) models on three different datasets: COCOMO81,
COCOMO_Nasa_v1, and COCOMO_Nasa_v2. The results showed significant improvements
in model evaluation metrics when applying PSO to adjust regression parameters. In the
COCOMO81 dataset, the PSO-optimized Linear Regression model achieved an MAE of 0.128,
an MSE of 0.043, an RMSE of 0.208, and an R-squared of 0.544. Compare that to the Standard
LR model, which yields an MAE of 0.766, an MSE of 1.001, an RMSE of 1.000, and a negative
R-squared of -9.576. These improvements show that PSO effectively identifies a set of
parameters that reduce prediction errors and improve the model's ability to explain data
variability.

 For COCOMO_Nasa_v1 datasets, using PSO also resulted in a marked performance
improvement. The LR+PSO model achieved an MAE of 0.425, an MSE of 0.375, an RMSE of
0.612, and an R-squared of 0.831, while the Standard LR model recorded an MAE of 0.586, an
MSE of 0.715, an RMSE of 0.846, and an R-squared of 0.678. This better performance suggests
that PSO helps Linear Regression models more accurately predict target data.

 The dataset COCOMO_Nasa_v2 shows the most notable improvement in model
performance. LR+PSO achieves a very low MAE of 0.076, an MSE of 0.008, an RMSE of 0.090,
and a high R-squared of 0.918, while the Standard LR model has an MAE of 0.201, MSE of
0.076, RMSE of 0.276, and an R-squared of 0.229. These results suggest that PSO can
significantly improve the prediction accuracy of Linear Regression models, resulting in much
lower errors and excellent model adjustment.

 Table 2. Results Comparison Results

Dataset Model MAE MSE RMSE R-Squared

COCOMO81 LR + PSO 0.128 0.043 0.208 0.544

COCOMO81 LR Standar 0.766 1.001 1.000 -9.576

COCOMO_Nasa_v1 LR + PSO 0.425 0.375 0.612 0.831

COCOMO_Nasa_v1 LR Standar 0.586 0.715 0.846 0.678

COCOMO_Nasa_v2 LR + PSO 0.076 0.008 0.090 0.918

COCOMO_Nasa_v2 LR Standar 0.201 0.076 0.276 0.229

DOI: https://doi.org/10.61487/jiste.v2i2.69

 Table 2 shows that LR+PSO outperforms Standard LR in all evaluation metrics in each
dataset. These improvements signal the effectiveness of PSO in optimizing the parameters of
the Linear Regression model, resulting in better model adjustment and lower prediction
errors. The performance improvement of the Linear Regression model after using PSO was
significant in all tested datasets. Notably, R-squared improvements suggest that PSO-
optimized models can better account for variations in target data. In the COCOMO81 context,
this increase is crucial given that Standard LR models have a negative R-squared, indicating
very poor adjustment. PSOs improve prediction accuracy and turn inadequate models into
models that account for more than half of the data variability. The most significant difference
was seen in the R-squared metric, where models optimized with PSO achieved positive
values, indicating a much better explanation of data variability than standard models that
recorded negative values.

Significantly lower MAE and RMSE values in models with PSO indicate higher
prediction accuracy and consistent and smaller errors in predictions. The fact that MSE also
decreased sharply in models with PSO indicates that the model succeeded in reducing
extreme prediction errors, which is an important aspect in assessing the quality of regression
models. This discovery emphasizes the effectiveness of PSOs in improving the performance
of Linear Regression models, especially in finding parameters that result in lower bias and
variance in model predictions. This optimization results in better accuracy and reinforces
confidence that the model will perform well against data not seen before, indicating the
potential for strong generalizations.

Several comparison graphs show significant performance improvements in Particle
Swarm Optimization (PSO)-optimized Linear Regression models compared to standard
Linear Regression models across three different datasets. Each graph visualizes evaluation
results from different models using MAE, MSE, RMSE, and R-squared metrics, providing a
clear picture of the impact of PSO on model performance.

Figure 2. Comparison of MAE

 The first graphic of Figure. 2 illustrates a lower MAE in the LR+PSO model across all
datasets, indicating a more consistent and smaller mean absolute error than the model
predicts. In the COCOMO81 dataset, the LR+PSO model showed a drastic reduction in MAE,
showing a sharp increase in prediction accuracy.

266

DOI: https://doi.org/10.61487/jiste.v2i2.69

Figure 3. Comparison of MSE

 The second graphic is Figure. 3 showed significant reductions in MSE for LR+PSO

models across all datasets. This decrease underscores PSO's effectiveness in reducing greater
prediction errors, with the most dramatic improvements occurring in datasets COCOMO81.

Figure 4. Comparison of RMSE

On the third chart in Figure. 4, The lower RMSE for the LR+PSO model confirms the
consistency of smaller prediction errors, with the most noticeable differences seen in the
dataset COCOMO81. This confirms that PSO provides a Linear Regression model that is more
accurate in estimating actual values.

Figure 5. Comparison of R-squared

DOI: https://doi.org/10.61487/jiste.v2i2.69

The fourth graphic in Figure. 5 revealed R-squared improvements in the LR+PSO model
for all datasets, with the COCOMO81 dataset displaying the most drastic increase from
negative to positive. Higher R-squared values in the COCOMO_Nasa_v1 and
COCOMO_Nasa_v2 datasets indicate that the PSO has successfully refined the model to
explain the greater proportion of variance in the observed data. The graph visualization
confirms that integrating PSO into the Linear Regression model consistently optimizes the
model's parameters, decreasing prediction errors and increasing the model's ability to explain
variability in the data. In conclusion, PSO stands out as a powerful optimization tool for
improving the performance of Linear Regression models in various dataset conditions.

CONCLUSION

The results confirmed that integrating Particle Swarm Optimization (PSO) in Linear
Regression effectively increases the accuracy of software effort estimation. The findings show
significant improvements in LR+PSO model performance compared to standard Linear
Regression, with lower MAE, MSE, and RMSE and a higher coefficient of determination (R-
squared). Consistently, LR+PSO models provide predictions closer to true values,
demonstrating great potential in improving the quality of software effort estimation.

For future research, it is recommended that the integration of other metaheuristics in
linear regression for software effort estimation be explored further. In addition to PSO,
techniques such as the Genetic Algorithm or the Ant Algorithm can be tested to see if these
approaches can also improve the performance of the estimation model. In addition, using
more diverse and complex datasets can provide deeper insights into model performance in
various software development contexts.

In addition, future research may focus on developing more adaptive and dynamic
software effort estimation models. Integrating machine learning techniques, such as agency-
based or kernel-based learning, can be the next step to improve the model's ability to handle
variation and complexity in software effort estimation datasets. With a more sophisticated
and diverse approach, it is expected to produce more accurate and reliable estimates for
software project management practitioners.

REFERENCES
Ahmed, M., Iqbal, N., Hussain, F., Khan, M. A., Helfert, M., Imran, & Kim, J. (2022).

Blockchain-Based Software Effort Estimation: An Empirical Study. IEEE Access, 10.
https://doi.org/10.1109/ACCESS.2022.3216840

Banimustafa, A. (2018). Predicting Software Effort Estimation Using Machine Learning
Techniques. 2018 8th International Conference on Computer Science and Information
Technology, CSIT, 249–256. https://doi.org/10.1109/CSIT.2018.8486222

Chahar, V., & Bhatia, P. K. (2022). Performance Analysis of Software Test Effort Estimation
using Genetic Algorithm and Neural Network. International Journal of Advanced Computer
Science and Applications, 13(10), 376–383.
https://doi.org/10.14569/IJACSA.2022.0131045

Cho, M.-Y., & Thom Hoang, T. (2017). Feature Selection and Parameters Optimization of SVM
Using Particle Swarm Optimization for Fault Classification in Power Distribution
Systems. https://doi.org/10.1155/2017/4135465

Demidova, L., Nikulchev, E., & Sokolova, Y. (2016). The SVM Classifier Based on the Modified
Particle Swarm Optimization. (IJACSA) International Journal of Advanced Computer Science
and Applications, 7(2).

Feizpour, E., Tahayori, H., & Sami, A. (2023). CoBRA without experts: New paradigm for
software development effort estimation using COCOMO metrics. Journal of Software:
Evolution and Process. https://doi.org/10.1002/smr.2569

https://doi.org/10.1109/ACCESS.2022.3216840
https://doi.org/10.1109/CSIT.2018.8486222
https://doi.org/10.14569/IJACSA.2022.0131045
https://doi.org/10.1155/2017/4135465
https://doi.org/10.1002/smr.2569

268

DOI: https://doi.org/10.61487/jiste.v2i2.69

Hidayat, W. F. (2023). Comparison of machine learning algorithm and feature selection
particle swarm optimization on software effort estimation. AIP Conference Proceedings,
2714. https://doi.org/10.1063/5.0128433

Hoc, H. T., Silhavy, R., Prokopova, Z., & Silhavy, P. (2022). Comparing Multiple Linear
Regression, Deep Learning and Multiple Perceptron for Functional Points Estimation.
IEEE Access, 10, 112187–112198. https://doi.org/10.1109/ACCESS.2022.3215987

Kaushik, A., Soni, A. K., & Soni, R. (2016). An improved functional link artificial neural
networks with intuitionistic fuzzy clustering for software cost estimation. International
Journal of System Assurance Engineering and Management, 7, 50–61.
https://doi.org/10.1007/s13198-014-0298-2

Kumar, K. H., & Srinivas, K. (2023). An accurate analogy based software effort estimation
using hybrid optimization and machine learning techniques. Multimedia Tools and
Applications, 82(20), 30463–30490. https://doi.org/10.1007/s11042-023-14522-x

Marco, R., Ahmad, S. S. S., & Ahmad, S. (2023). An Improving Long Short Term Memory-Grid
Search Based Deep Learning Neural Network for Software Effort Estimation.
International Journal of Intelligent Engineering and Systems, 16(4), 164–180.
https://doi.org/10.22266/ijies2023.0831.14

Marco, R., Suryana, N., & Ahmad, S. S. S. (2019). A systematic literature review on methods
for software effort estimation. Journal of Theoretical and Applied Information Technology,
97(2), 434–464.

Park, B. K., Moon, S. Y., & Kim, R. Y. C. (2016). Improving Use Case Point (UCP) Based on
Function Point (FP) Mechanism. 2016 International Conference on Platform Technology and
Service, PlatCon 2016 - Proceedings. https://doi.org/10.1109/PlatCon.2016.7456803

Shafiee, S. (2023). An empirical evaluation of scrum training’s suitability for the model-driven
development of knowledge-intensive software systems. Data and Knowledge Engineering,
146. https://doi.org/10.1016/j.datak.2023.102195

Sharma, A., & Chaudhary, N. (2020). Linear Regression Model for Agile Software
Development Effort Estimation. 2020 5th IEEE International Conference on Recent Advances
and Innovations in Engineering, ICRAIE 2020 - Proceeding.
https://doi.org/10.1109/ICRAIE51050.2020.9358309

Shukla, S., & Kumar, S. (2021). An Extreme Learning Machine based Approach for Software
Effort Estimation. International Conference on Evaluation of Novel Approaches to Software
Engineering, ENASE - Proceedings, 47–57. https://doi.org/10.5220/0010397700470057

Silhavy, R., Bures, M., Alipio, M., & Silhavy, P. (2023). More Accurate Cost Estimation for
Internet of Things Projects by Adaptation of Use Case Points Methodology. IEEE Internet
of Things Journal, 10(21), 19312–19327. https://doi.org/10.1109/JIOT.2023.3281614

Telikani, A., Tahmassebi, A., Banzhaf, W., & Gandomi, A. H. (2022). Evolutionary Machine
Learning: A Survey. ACM Computing Surveys, 54(8). https://doi.org/10.1145/3467477

Wu, D., Li, J., & Bao, C. (2018). Case-based reasoning with optimized weight derived by
particle swarm optimization for software effort estimation. Soft Computing, 22(16), 5299–
5310. https://doi.org/10.1007/s00500-017-2985-9

https://doi.org/10.1063/5.0128433
https://doi.org/10.1109/ACCESS.2022.3215987
https://doi.org/10.1007/s13198-014-0298-2
https://doi.org/10.1007/s11042-023-14522-x
https://doi.org/10.22266/ijies2023.0831.14
https://doi.org/10.1109/PlatCon.2016.7456803
https://doi.org/10.1016/j.datak.2023.102195
https://doi.org/10.1109/ICRAIE51050.2020.9358309
https://doi.org/10.5220/0010397700470057
https://doi.org/10.1109/JIOT.2023.3281614
https://doi.org/10.1145/3467477
https://doi.org/10.1007/s00500-017-2985-9

