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Abstract  
In the context of software effort estimation, this study investigates the use of Particle Swarm 
Optimization (PSO)-based Linear Regression to improve estimation accuracy. The main problem faced 
is the limitations of standard Linear Regression models in accurately estimating the effort required for 
software development projects. This research aims to improve the quality of estimation of software 
efforts to optimize resource management and project schedules. The method used was the integration 
of PSOs in Linear Regression, which was evaluated using three different COCOMO datasets. 
Experimental results show that LR+PSO models consistently outperform standard Linear Regression 
with lower MAE, MSE, and RMSE, as well as higher R-squared. In conclusion, integrating PSOs in 
Linear Regression effectively improves the estimation accuracy of software efforts, demonstrating great 
potential for improving estimation quality in software project management practices. 
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INTRODUCTION 
Software effort estimation is an important aspect of software project management, 

which directly impacts resource allocation and project scheduling. Linear Regression (LR) has 
long been used in software effort estimation practices, but in some cases, these models have 
limitations in accurately estimating the effort required (Sharma & Chaudhary, 2020). Several 
studies have been conducted to calculate effort in software development with algorithmic 
approaches such as Use Case Point, Function Point, and COCOMO (Feizpour et al., 2023; 
Kaushik et al., 2016; Park et al., 2016; Silhavy et al., 2023). 

 In addition, some studies use Machine Learning to improve accuracy in classification, 
estimation, and prediction using various methods, including metaheuristic techniques. For 
example, Cho et al. (2017) proposed the use of Particle Swarm Optimization (PSO) algorithms 
in Support Vector Machine (SVM) to optimize parameters in classifying Power Distribution 
Systems whose results showed a significant improvement in classification accuracy (Cho & 
Thom Hoang, 2017). In addition, Chahar et al. (2022) applied Genetic Algorithms and Neural 
Networks to software testing, and the results showed consistent improvements in prediction 
accuracy (Chahar & Bhatia, 2022). Particle Swarm Optimization (PSO) is a metaheuristic that 
has proven effective in solving non-linear optimization problems (Hidayat, 2023; Wu et al., 
2018). Integrating PSO in Linear Regression for software effort estimation promises improved 
accuracy and performance of estimation models. 

Based on this background, this study aims to answer several research questions about 
whether integrating PSO in Linear Regression can improve the accuracy of software effort 
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estimation. An important part is how the performance of the LR+PSO model compares to the 
standard Linear Regression model. This study uses public datasets such as COCOMO81, 
COCOMO_Nasa_v1, and COCOMO_Nasa_v2 because these datasets are often used in several 
studies on the topic of Software Effort Estimation (Banimustafa, 2018; Hoc et al., 2022; Kumar 
& Srinivas, 2023). 

This research is expected to significantly contribute to software effort estimation practice 
by introducing a new approach that combines Linear Regression (LR) with PSO. The results 
of this research can help organizations and practitioners produce more accurate and reliable 
estimates of software efforts, thereby minimizing the risk of estimation errors and improving 
the efficiency of software project management. A major contribution of this research was the 
development of software effort estimation models that leverage the power of PSO to improve 
estimation accuracy and performance. In addition, it provides a deeper understanding of 
metaheuristic integration in the context of software effort estimation and a comprehensive 
comparison between LR+PSO models and standard Linear Regression. 

 
METHOD  

This section explains the dataset and the stages used in conducting research. The public 
dataset is commonly used in Software Effort Estimation research (Marco et al., 2019, 2023). 
Table 1 contains a description of each dataset. The stages of the research are shown in Figure 
1. 

 
Table 1. Dataset Description 

Dataset Project Feature Min Effort Max Effort 

COCOMO81 63 17 5.9 11,400 

COCOMO Nasa 

v1 
60 16 8.4 3,240 

COCOMO Nasa 

v2 
93 17 8.4 8211 

 
 Broadly speaking, the research stages consist of 3 major parts, namely Preprocessing, 

Modeling, and Prediction, and the last is Evaluation. In the Processing section, the dataset 
ready to be used will be changed to Byte Literals, namely changing from String type to Object 
type to prevent errors in subsequent data processing and ensure it is in the appropriate format 
when conducting analysis. Data normalization using StandardScaler so that the range of data 
to be processed is not too far can cause proportional models. Data sharing enables training 
and test models on a single subset (Shafiee, 2023). 

 
 

Figure 1. Research Step 
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 In the Modeling and Prediction section, namely making models and making 
predictions using Linear Regression (LR) which generally uses the formula: 

y = β0 + β1x1 + β2x2 + … + βnxn +ϵ        (1) 

 
 Where y is the dependent variable, x1, x2, ... xn is the independent variable, β0, β1, ..., βn 
is the regression coefficient, and ε is the error.  Linear Regression, as the basis of regression 
techniques, assumes the existence of a linear relationship between features and targets. 
Meanwhile, the Particle Swarm Optimization (PSO) method, is used to determine parameters 
for processing by Linear Regression. PSO was first recognized by Eberhart and Kennedy in 
1995 which is one of the metaheuristic methods that serves to help determine the optimization 
of a problem (Demidova et al., 2016). PSO is inspired by the behavior of bio-natural (especially 
living things later referred to as particles), which cluster (become a swarm of particles) to find 
the same goal, with each particle determining its path or the most optimal way and will 
eventually be followed by other particles. PSO begins by randomly generating several 
solutions of particles, among which will be the optimal value as a solution for the parameter 
(Telikani et al., 2022). In general, the formula for PSO is divided into 2, namely Update 
Acceleration, and Position Update. For Acceleration Update the formula is: 

𝑣𝑖
(𝑡+1)

=  𝑤 ∗  𝑣𝑖
(𝑡)

+  𝑐1 ∗ 𝑟1 ∗  (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
(𝑡)

)  + 𝑐2 ∗ 𝑟2 ∗  (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖
(𝑡)

)    (2) 

 Where vi(t+1) is the velocity of the particle i at the t+1 iteration.  w is the inertial weight 
that controls the impact of the previous speed on the current speed. vi(t) is the velocity of 
particle i at iteration t. c1 and c2 are acceleration constants that control the influence of particle 
distances from Pbest, i and Gbest on particle movement. r1 and r2 is a uniform random number 
in a range [0, 1]. Pbest, i is the best position that particle i have achieved so far (Personal best). 
Gbest is the best position that has been achieved by the entire herd so far (Global best). xi(

t) is 
the position of particle i at iteration t. As for the Acceleration Update formula, it is: 

 𝑥𝑖
(𝑡+1)

 =  𝑥𝑖
(𝑡)

+ 𝑣𝑖
(𝑡+1)

          (3) 

 Where xi(
t+1) is the position of particle i on the iteration t+1. The essence of PSO is to 

update the velocity and position of each particle based on its best personal experience and the 
best experience of the herd, hoping to find an optimal global solution to a given problem. 
Inertial weight w, and acceleration constant c1 and c2 is a key parameter that affects PSO 
performance and is usually determined through experimentation or heuristic settings. 
 The Evaluation section uses calculations such as Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²) for each model 
(Ahmed et al., 2022; Shukla & Kumar, 2021). MAE is the average of the absolute values of the 
error between the prediction and the actual value. The formula is: 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦𝑖  −  𝑦̂𝑖|𝑛

𝑖=1          (4) 

 Where yi is the actual value. 𝑦̂𝑖is the predicted value. n is the number of samples. MSE 
is the average of the squares of the error between the prediction and the actual value. The 
formula is: 

𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝑦𝑖  −  𝑦̂𝑖)2𝑛

𝑖=1          (5) 
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 Where yi is the actual value. is the predicted value. 𝑦̂𝑖n is the number of samples. Root 
Mean Squared Error (RMSE) is the square root of the MSE, giving the model error measure in 
units equal to the target variable. The formula is: 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸  =  √
1

𝑛
 ∑ (𝑦𝑖  −  𝑦̂𝑖)2𝑛

𝑖=1        (6) 

 Where yi is the actual value. is the predicted value. 𝑦̂𝑖n is the number of samples. R-
squared (R²) is the proportion of variation in the dependent variable that can be explained by 
the independent variable in the regression model. The formula is: 

𝑅2  =  1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

         (7) 

 Where yi is the real value. 𝑦̂𝑖 is the predicted value. 𝑦̅𝑖  is the average of the actual 
values. n is the number of samples. The R-squared indicates how well the data fits the 
regression model. A higher R-squared value indicates that the model can better explain the 
output variations. 
 
RESULT AND DISCUSSION 

 This study explores the use of Particle Swarm Optimization (PSO) to improve the 
performance of Linear Regression (LR) models on three different datasets: COCOMO81, 
COCOMO_Nasa_v1, and COCOMO_Nasa_v2. The results showed significant improvements 
in model evaluation metrics when applying PSO to adjust regression parameters. In the 
COCOMO81 dataset, the PSO-optimized Linear Regression model achieved an MAE of 0.128, 
an MSE of 0.043, an RMSE of 0.208, and an R-squared of 0.544. Compare that to the Standard 
LR model, which yields an MAE of 0.766, an MSE of 1.001, an RMSE of 1.000, and a negative 
R-squared of -9.576. These improvements show that PSO effectively identifies a set of 
parameters that reduce prediction errors and improve the model's ability to explain data 
variability. 

 For COCOMO_Nasa_v1 datasets, using PSO also resulted in a marked performance 
improvement. The LR+PSO model achieved an MAE of 0.425, an MSE of 0.375, an RMSE of 
0.612, and an R-squared of 0.831, while the Standard LR model recorded an MAE of 0.586, an 
MSE of 0.715, an RMSE of 0.846, and an R-squared of 0.678. This better performance suggests 
that PSO helps Linear Regression models more accurately predict target data. 

 The dataset COCOMO_Nasa_v2 shows the most notable improvement in model 
performance. LR+PSO achieves a very low MAE of 0.076, an MSE of 0.008, an RMSE of 0.090, 
and a high R-squared of 0.918, while the Standard LR model has an MAE of 0.201, MSE of 
0.076, RMSE of 0.276, and an R-squared of 0.229. These results suggest that PSO can 
significantly improve the prediction accuracy of Linear Regression models, resulting in much 
lower errors and excellent model adjustment. 

 
 Table 2. Results Comparison Results 

Dataset Model MAE MSE RMSE R-Squared 

COCOMO81 LR + PSO 0.128 0.043 0.208 0.544 

COCOMO81 LR Standar 0.766 1.001 1.000 -9.576 

COCOMO_Nasa_v1 LR + PSO 0.425 0.375 0.612 0.831 

COCOMO_Nasa_v1 LR Standar 0.586 0.715 0.846 0.678 

COCOMO_Nasa_v2 LR + PSO 0.076 0.008 0.090 0.918 

COCOMO_Nasa_v2 LR Standar 0.201 0.076 0.276 0.229 
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 Table 2 shows that LR+PSO outperforms Standard LR in all evaluation metrics in each 
dataset. These improvements signal the effectiveness of PSO in optimizing the parameters of 
the Linear Regression model, resulting in better model adjustment and lower prediction 
errors. The performance improvement of the Linear Regression model after using PSO was 
significant in all tested datasets. Notably, R-squared improvements suggest that PSO-
optimized models can better account for variations in target data. In the COCOMO81 context, 
this increase is crucial given that Standard LR models have a negative R-squared, indicating 
very poor adjustment. PSOs improve prediction accuracy and turn inadequate models into 
models that account for more than half of the data variability. The most significant difference 
was seen in the R-squared metric, where models optimized with PSO achieved positive 
values, indicating a much better explanation of data variability than standard models that 
recorded negative values. 

Significantly lower MAE and RMSE values in models with PSO indicate higher 
prediction accuracy and consistent and smaller errors in predictions. The fact that MSE also 
decreased sharply in models with PSO indicates that the model succeeded in reducing 
extreme prediction errors, which is an important aspect in assessing the quality of regression 
models. This discovery emphasizes the effectiveness of PSOs in improving the performance 
of Linear Regression models, especially in finding parameters that result in lower bias and 
variance in model predictions. This optimization results in better accuracy and reinforces 
confidence that the model will perform well against data not seen before, indicating the 
potential for strong generalizations. 

Several comparison graphs show significant performance improvements in Particle 
Swarm Optimization (PSO)-optimized Linear Regression models compared to standard 
Linear Regression models across three different datasets. Each graph visualizes evaluation 
results from different models using MAE, MSE, RMSE, and R-squared metrics, providing a 
clear picture of the impact of PSO on model performance. 

 
 

 

Figure 2. Comparison of MAE 
 

 The first graphic of Figure. 2 illustrates a lower MAE in the LR+PSO model across all 
datasets, indicating a more consistent and smaller mean absolute error than the model 
predicts. In the COCOMO81 dataset, the LR+PSO model showed a drastic reduction in MAE, 
showing a sharp increase in prediction accuracy. 
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Figure 3. Comparison of MSE 
 
 The second graphic is Figure. 3 showed significant reductions in MSE for LR+PSO 

models across all datasets. This decrease underscores PSO's effectiveness in reducing greater 
prediction errors, with the most dramatic improvements occurring in datasets COCOMO81. 

 

Figure 4. Comparison of RMSE 
 

On the third chart in Figure. 4, The lower RMSE for the LR+PSO model confirms the 
consistency of smaller prediction errors, with the most noticeable differences seen in the 
dataset COCOMO81. This confirms that PSO provides a Linear Regression model that is more 
accurate in estimating actual values. 

 
 

Figure 5. Comparison of R-squared 
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The fourth graphic in Figure. 5 revealed R-squared improvements in the LR+PSO model 
for all datasets, with the COCOMO81 dataset displaying the most drastic increase from 
negative to positive. Higher R-squared values in the COCOMO_Nasa_v1 and 
COCOMO_Nasa_v2 datasets indicate that the PSO has successfully refined the model to 
explain the greater proportion of variance in the observed data. The graph visualization 
confirms that integrating PSO into the Linear Regression model consistently optimizes the 
model's parameters, decreasing prediction errors and increasing the model's ability to explain 
variability in the data. In conclusion, PSO stands out as a powerful optimization tool for 
improving the performance of Linear Regression models in various dataset conditions. 
 
CONCLUSION  

The results confirmed that integrating Particle Swarm Optimization (PSO) in Linear 
Regression effectively increases the accuracy of software effort estimation. The findings show 
significant improvements in LR+PSO model performance compared to standard Linear 
Regression, with lower MAE, MSE, and RMSE and a higher coefficient of determination (R-
squared). Consistently, LR+PSO models provide predictions closer to true values, 
demonstrating great potential in improving the quality of software effort estimation. 

For future research, it is recommended that the integration of other metaheuristics in 
linear regression for software effort estimation be explored further. In addition to PSO, 
techniques such as the Genetic Algorithm or the Ant Algorithm can be tested to see if these 
approaches can also improve the performance of the estimation model. In addition, using 
more diverse and complex datasets can provide deeper insights into model performance in 
various software development contexts. 

In addition, future research may focus on developing more adaptive and dynamic 
software effort estimation models. Integrating machine learning techniques, such as agency-
based or kernel-based learning, can be the next step to improve the model's ability to handle 
variation and complexity in software effort estimation datasets. With a more sophisticated 
and diverse approach, it is expected to produce more accurate and reliable estimates for 
software project management practitioners. 
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