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Abstract  

Based on current data, there has been an increase in social media users, which shows that more and 

more people are using social media as a place to express themselves and their emotions. This will 

generate thousands of tweets within a day. The tweet data is processed so that it is useful for 

stakeholders who need it to help them make a decision. Because sentence structures on social media 

are often irregular, pre-processing is necessary to make tweet sentences normal. Stemming and 

Stopwords are pre-processing techniques that are widely used in sentiment analysis. In previous 

studies, there were indications that its use did not have a significant effect on accuracy. In this study, 

the authors divide it into four models: using stemming and stopwords and without using stemming 

and stopwords. Data using stemming gets the best results with an f1-score of 65%. These results indicate 

an increase in performance in the use of stemming and stopwords using Multi-class Naive Bayes. 
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INTRODUCTION 

According to Simon Kemp (2022) there were an additional 2.1 million internet users and more 

than 21 million active social media users. Twitter is one of the social media accounts for 18.45 million 

users in Indonesia. This shows that more and more people are using social media as a place and means 

to express themselves in the form of tweets or opinions in all aspects. So that thousand and even millions 

of tweets can occur within a day on social media. Twitter is widely used by government agencies, 

industry, education, and business to solve daily problems. Compared to other social media, this provides 

an API that helps its users collect tweet data in the form of text. When a post or tweet occurs, it often 

contains information or the emotional state of the person who made it. Even when someone criticizes a 

policy, they indirectly show their emotions. Basically, a sentiment is not only between positive and 

negative (Binary Class), but can also be in the form of love, joy, anger, sadness, or fear (Multi Class). 

Sentiment analysis is a research branch of text mining with a focus on analyzing opinions in a 

text. Sentiment analysis on social media attracts many researchers around the world. One of them is 

Twitter, a social media site that allows users to express themselves freely. In the business world, 

sentiment analysis is used to analyze customer opinions about products and services. The data that has 

been processed is information for stakeholders to assist in decision-making and in deciding the target 

market. The structure of the word comments on social media is irregular and contains many 

abbreviations in the sentence structure; this is a challenge in carrying out the sentiment analysis process, 

so the use of pre-processing is very important so that it can affect the accuracy of the sentiment analysis 

process. Pre-processing is also very critical in text analysis. Therefore, pre-processing aims to organize 

and clean text data originating from social media before being further processed in classification. 

Stemming and stopwords are pre-processing techniques used in text analysis. Stemming is useful 

for changing a word into its base word. Meanwhile, stopwords eliminate words that often appear but 

have no meaning. In previous research, there was an indication that stemming and stopwords have no 

effect on accuracy. In previous research with Binary classes using the SVM Classifier, it was shown 
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that the use of stemming and stopwords did not significantly affect accuracy; using stemming without 

stopwords only increased accuracy from 81.4% to 81.44%. Whereas in other studies with Binary 

classification using SVM and the classification method, the results showed that the use of stemming 

and stopwords had no significant effect and did not even increase accuracy with either SVM or the 

classification method. The use of KNN and SVM is widely used for the classification process in 

sentiment analysis. The classifier method is considered a potentially better method for classifying data 

than other classification methods in terms of accuracy. The classification method was also chosen as a 

classifier because it is easy and fast at predicting data. Therefore, based on the background that has been 

described, the authors plan to use a classification method with multiple classes, considering accuracy 

based on previous research, which has good potential, is easy and fast to implement, and is widely used 

for classification. So, the authors intend to conduct research with the title Performance Analysis of the 

Use of Stopwords and Stemming in Sentiment Analysis with a Classification Approach. In this study, 

before the data is processed, pre-processing will be carried out using Stemming and Stopwords as the 

focus of the research, which will then be processed using the Nave Bayes method. 

 

METHOD  
In supporting research, a research design is needed to describe the processes that will be carried 

out with the aim of achieving maximum results. This design is based on the Cross-Industry Standard 

Process for Data Mining (CRISP-DM), which includes Data Understanding, Data Preparation, 

modelling, and Evaluation. The author uses the data collection method, which is carried out by studying 

literature and finding and studying references and information from various journals, books, and 

websites as references related to online research information. The dataset used in this study is the 

Indonesian Twitter Emotion Dataset obtained from Mei Silviana Saputri's github repository with the 

username meisaputri21. This dataset has a size of 355 KB, along with an abbreviation dictionary. The 

database consists of two columns, namely labels and tweets. The label column contains love, anger, 

sadness, joy, and fear as parameters for classification. Meanwhile, the tweet column contains tweets 

from Twitter users. Based on the review results from these journals, this research has more value in the 

process that will be carried out later. This research divides it into four models; there are studies that 

divide it into four models. However, this research uses the Binary Classification Technique using SVM 

as a Classifier, whereas in this study the authors used the Multi-Class Classification Technique using 

Nave Bayes as a Classifier. There is also research that uses the Multi-Class Technique, but this research 

only compares classifiers, or, in other words, does not focus on Stemming and Stopwords. 

  

RESULT AND DISCUSSION 

 At this dataset input stage, the author inputs the dataset using data that has been retrieved from 

the GitHub repository under the name Indonesian-Twitter-Emotion-Dataset. This dataset also has two 

columns, namely labels and tweets, with a total of 4401 rows. The label column contains love, anger, 

sadness, joy, and fear as parameters for classification. After the data has been successfully entered, it 

will be prepared before being used for model training. Basically, the existing data has a different letter 

form. Therefore, at this stage, the data will be converted into lower-case or lower-case letters with the 

aim of avoiding unwanted errors. The existing dataset still has a lot of noise, so this data cleaning 

function is to remove the noise that is still present in each sentence. Data cleaning includes the process 

of removing special tweets (Mentions, Links, Hashtags, numbers, punctuation marks, and excessive 

spaces). So that the output obtained from the cleaning process becomes cleaner data and reduces noise 

in sentences. After the data is cleaned, it is processed by separating text into pieces called tokens, which 

are then analyzed. Words, numbers, symbols, punctuation marks, and other important entities can be 

considered tokens. In NLP, tokens are defined as words," although tokenizing can also be done on 

paragraphs and sentences. In this process, the researcher uses the NLTK library by using a function 

called word tokenize. The use of word tokening is followed by the apply () function, which works on 

the Pandas Series. The output of this process is in the form of sentences that have been split into words 

per word with separators in the form of commas ",". 

Normalization is used to equate a term that has the same meaning but is written differently; it can 

be caused by misspellings, shortening of words, or "slang". The initial stage in this process is to create 

a dictionary with words that have the same meaning, then create a variable as a placeholder for the 
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words in the dictionary. After that, the looping process is carried out as much as the amount of data in 

the dictionary so that it will produce output. Then the data will go through a selection process one by 

one to determine whether the word in the nth term document is found in the abbreviation dictionary. If 

true, then replace the nth term; if false, then continue the loop. At this stemming stage, the author uses 

the stemmer function taken from the Literary library to return the word to its basic form. Because the 

stemmer. Stem () function in the Sastrawi library is slow, here the author uses the Swifter library to 

speed up the stemming process on Data frames by running tasks in parallel. Processing speed can be 

twice as fast or even faster if you use Swifter. 

Stopwords aims to remove the words from the tokens generated by the previous process. Common 

words that usually appear in large numbers are considered to have no meaning, so they will be removed. 

Researchers used the stopword () function taken from the NLTK library to get a list of Indonesian 

stopwords. The following is a list of Indonesian stopwords generated by the stopword () function. Not 

only that, the researcher also added several words that the writer considers to have no important meaning 

and also have a lot of frequency. After the stopwords are collected, the researcher creates a function 

that will be called in the future if used. At this TF-IDF stage, the data will then go through a weighting 

process with the intention of making words that appear frequently have a value that tends to be small, 

while words that occur less frequently will have a value that tends to be large. After going through the 

pre-processing process, the dataset is then modelled by dividing it into training data and testing data. In 

terms of dataset division, the authors divide it into four different models. Then the dataset will be 

divided into 8:2 with the information that 80% of the dataset is used as training data and 20% is used 

as testing data. But before dividing the dataset, the data must be token-fitted, or, in other words, 

combining sentences that have been broken word for word into complete sentences. Then, the dataset 

can be divided for training and testing. In dividing the dataset, there is a train test split () function taken 

from the sklearn model-selection library. This function has several parameters that can be used: the x 

parameter is taken from the tweet column that has been joined by tokens, the y parameter is taken from 

the label column, and the test size parameter functions to share testing data. After that, the data will go 

through the training stage, which functions to train the data before it is tested. After the dataset model 

has been completed through the data sharing process and the training process, the data will go through 

the classification stage, where the data will be tested, or what can be called the predicting process. In 

this process, the researcher uses the predict () function taken from the sklearn library. The parameter 

used in the predict () function is the variable x, which has been divided into 20% of the dataset in the 

previous stage. So that this x variable will be tested to find out the final result. After all models have 

been trained and tested, the performance evaluation of each model will be based on precision, recall, 

and f1-score. The reason for using it is because the dataset used by each class is unbalanced. Precision 

is the ratio of true positive predictions compared to all positive predicted results, and Recall is the ratio 

of true positive predictions compared to all true positive data. While the f1-score is a harmonic average 

of precision and recall. 

The first step to be taken in outline is to prepare the dataset. Then the authors divide it into four 

models to determine the performance of each model. After that, the dataset is designed to be divided 

into data for training and testing. The author has explained the implementation process from start to 

finish and then discussed the results of the implementation. Based on the results of the previous 

implementation, it appears that there is an imbalance in the dataset with a total of 881 testing data points; 

therefore, the performance of a model will be taken based on the f1-score. The value on the f1-score is 

taken from the results of the confusion matrix for each class. As one example, here the author uses the 

label anger (0) in calculating TP, FP, and FN. After the f1-score for each class is calculated, the next 

step is to calculate the average f1-score for all classes. So that the obtained f1-score in the data nstem 

nstop model is 0.627 and the time needed in the classification process is 385.3 ms. 

Based on the results of the previous implementation, it appears that there is an imbalance in the 

dataset with a total of 881 testing data points; therefore, the performance of a model will be taken based 

on the f1-score. The value on the f1-score is taken from the results of the confusion matrix for each 

class. As one example, here the author uses the label anger (0) in calculating TP, FP, and FN. After the 

f1-score for each class is calculated, the next step is to calculate the average f1-score for all classes. So 

that the obtained f1-score in the data stop model is 0.633 and the time needed in the classification 

process is 265.5 ms. Based on the results of the previous implementation, it appears that there is an 
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imbalance in the dataset with a total of 881 testing data points; therefore, the performance of a model 

will be taken based on the f1-score. The value on the f1-score is taken from the results of the confusion 

matrix for each class. After the f1-score for each class is calculated, the next step is to calculate the 

average f1-score for all classes. So that the obtained f1-score in the data stem model is 0.65 and the time 

needed in the classification process is 208.9 ms. Based on the results of the previous implementation, it 

appears that there is an imbalance in the dataset with a total of 881 testing data points; therefore, the 

performance of a model will be taken based on the f1-score. The value on the f1-score is taken from the 

results of the confusion matrix for each class. After the f1-score for each class is calculated, the next 

step is to calculate the average f1-score for all classes. So that the obtained f1-score in the data stem 

stop model is 0.648 and the time needed in the classification process is 141.7 ms. 

This study has implemented sentiment analysis by comparing datasets without stemming and 

stopwords (data nstem nstop), datasets with stopwords (data stop), datasets with stemming (data_stem), 

and datasets with stemming and stopwords (data stem stop) with a classification approach. Based on 

the results of the previous implementation, it can be seen that the model without stemming and 

stopwords gets an evaluation value of a f1-score of 62.7% with a processing time of 385.3 ms, the model 

with stopwords gets an evaluation value of a f1-score of 63.3% with a processing time of 265.5 ms, the 

model with stemming gets an evaluation value of a f1-score of 65% with a processing time of 208.9 ms, 

and the model with stemming and stopwords gets an evaluation value of 64.8% with a processing time 

of 141.7 ms. So, this research is inversely proportional to research conducted by Hidayatullah (2015), 

who used Nave Bayes and SVM with Binary classification. There is a decrease in accuracy when the 

model uses stemming and stopwords. Whereas in another study conducted by Pradana & Hayaty (2019), 

SVM was used with Binary classification. The increase in performance is only found in the No Stop 

(data stem) model by 0.04%, and there is a decrease in performance in the other models. 

 

CONCLUSION  

The results obtained from the previous implementation show that the use of Stopwords and 

Stemming pre-processing can improve performance in sentiment analysis. With the results of the model 

without stemming and stopwords getting an f1-score of 62.7%, the model with stopwords getting an f1-

score of 63.3%, the model with stemming getting an f1-score of 65%, and the models with stemming 

and stopwords getting an f1-score of 64.8%. The use of Stopwords and Stemming also improves 

performance in the classification process. With data nstem nstop processing time of 385.3 ms, data stop 

processing time of 265.5 ms, data stem with processing time of 208.9 ms, and data stem stop with 

processing time of 141.7 ms. Using a balanced dataset to get better results. Using more datasets so that 

the performance of each model in processing time is more visible. Using other techniques such as binary 

and multi-Label to determine the effectiveness of pre-processing. The selection of pre-processing 

techniques is important for processing text data to improve sentiment classification performance. 
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