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Abstract  

This study evaluates the effectiveness of Distribution Requirements Planning (DRP) 

integrated with ARIMA time series forecasting to support delivery scheduling decisions and 

the determination of minimum inventory levels. As a representative case study, a 60-month 

sales series of Ultra-Pure Water was used to simulate fluctuating retail demand across the 

agent–depot network. The Augmented Dickey–Fuller test confirmed stationarity (p = 0.0142), 

allowing candidate ARIMA (p, 0, q) models to be evaluated using ACF/PACF and 

information criteria. The best model was ARIMA (1,0,1), which had the lowest Akaike 

Information Criterion and passed diagnostic tests (normal residuals, no autocorrelation, no 

heteroscedasticity), making it suitable for operational forecasting. Projection results indicated 

a stable demand pattern and yielded a safety stock threshold of 733.24 units/month 

(equivalent to 24.44 units/day) as a reference for inventory control. These findings 

demonstrate that the DRP–ARIMA integration can enhance supply reliability and distribution 

efficiency, particularly for subsidized goods such as 3 kg LPG, with practical implications for 

determining adaptive inventory levels, delivery routes and frequency, and upstream–

downstream coordination. Theoretically, this study provides additional empirical evidence 

on the use of quantitative forecasting models to operationalize DRP in the energy sector, while 

also providing a foundation for replication in other critical commodities. 

 

Keywords: distribution requirements planning, 3 kg LPG distribution, logistics 
efficiency, supply chain, energy companies. 
 
 

INTRODUCTION 
The distribution of 3 kg LPG gas is one of the important aspects in the energy industry, 

particularly in meeting the needs of households and small businesses in Indonesia. Efficiency 

in distribution becomes a key factor in ensuring the availability and price stability of products 

in the market. One method that can be applied to optimize distribution is Distribution 

Requirements Planning (DRP), a planning approach that focuses on demand forecasting and 

systematic inventory management to avoid shortages or excess stock (Ballou, 2004). 

The DRP method has been applied in various industries to improve supply chain 

efficiency, reduce logistics costs, and increase customer satisfaction (Christopher, 2016). In the 

context of 3 kg LPG distribution, this method has significant potential to enhance the 
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effectiveness of deliveries from agents to depots and reduce the likelihood of distribution 

delays that could affect supply stability (Chopra & Meindl, 2019). 

However, the implementation of the DRP method in 3 kg LPG distribution still faces 

various challenges, such as infrastructure limitations, demand variability, and strict 

government regulations in subsidized goods distribution (Bowersox et al., 2013). Other factors 

that need to be considered include the role of technology in supporting DRP implementation 

(Simchi-Levi et al., 2007), demand-based distribution planning (Ross, 2015), and an integrated 

supply chain planning approach (Stadtler, 2015). 

The application of the DRP system also depends on optimal logistics and distribution 

management aspects (Rushton et al., 2022), appropriate supply chain strategies (Taylor, 2004), 

and the implementation of efficient inventory control systems (Pfohl, 2004). In addition, the 

success factors in DRP implementation are also related to coordination between suppliers, 

distributors, and retailers (Lambert et al., 1998), as well as the utilization of information 

technology in distribution systems (Jonsson, 2008). 

From an academic perspective, previous research highlights various challenges and 

opportunities in the application of DRP, including in the context of logistics optimization 

(Mentzer et al., 2001), inventory control strategies (Axsäter, 2015), and the application of 

mathematical models in distribution (Ghiani et al., 2013). Other factors of concern include 

operational efficiency in distribution management (Slack et al., 2021), the application of lean 

concepts in the supply chain (Hopp & Spearman, 2011), and the influence of supply chain 

strategies on the competitiveness of the energy industry (Frazelle, 2002). 

This study aims to evaluate the implementation of the DRP method in optimizing the 

distribution of 3 kg LPG gas in energy companies, both from a theoretical review and its field 

application. Using an analytical approach and case study, this research is expected to provide 

insights into the advantages and limitations of the DRP method in supporting more efficient 

and effective distribution (Chopra, 2019). 

Thus, this study will contribute to energy companies in designing better distribution 

strategies and to stakeholders in understanding the importance of supply chain optimization 

in the distribution of subsidized goods (Waters, 2007). 

 
METHOD  

This study employs a mixed-methods approach combining quantitative and qualitative 

methods, using case study and simulation techniques, to develop an optimization model for 

3 kg LPG distribution based on Distribution Requirements Planning (DRP). The initial stage 

of the research focuses on preparation and literature review, which includes systematic 

problem and research objective identification, conceptual framework development, and initial 

hypothesis formulation. Subsequently, the study collects and reviews scientific literature, 

journals, industry reports, and policy documents related to energy distribution, supply chain 

efficiency, and the implementation of the DRP method. At this stage, a list of key parameters 

and performance indicators to be used in model design is also prepared, along with the 

determination of analytical tools and methods, including logistics simulation software. 

Data collection is conducted through a combination of secondary and primary data. 

Secondary data are obtained from official LPG distribution reports, government statistical 

data, energy regulations, and relevant previous publications. Meanwhile, primary data are 

collected through in-depth interviews and structured surveys with industry actors, such as 

distribution agents, logistics operators, and 3 kg LPG consumers, to gain direct insights into 

demand patterns, operational constraints, and actual distribution practices. This approach 
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allows the study to gain a comprehensive understanding of the LPG distribution conditions 

in the field. 

After data collection, the next stage is the design of the DRP optimization model. The 

distribution model is designed by integrating DRP principles while considering actual 

demand dynamics and distribution capacity. Key variables incorporated into the model 

include historical demand data, stock availability, vehicle and warehouse capacity, delivery 

schedules, and logistics cost structures. Additionally, several distribution scenarios are 

developed to test the model’s flexibility under real conditions, such as demand surges or 

supply limitations. 

The simulation and model validation stage involves testing the designed model using 

logistics software. Validation is conducted by comparing the simulation results with actual 

data and conventional scenarios to measure the model’s effectiveness in terms of delivery 

accuracy, supply reliability, and cost efficiency. Sensitivity testing is also performed to assess 

the model’s response to changes in key input parameters, ensuring that the model can be 

adapted to varying operational conditions. 

Analysis and evaluation are carried out both quantitatively and qualitatively. 

Quantitative analysis includes measuring performance indicators such as total distribution 

cost reduction, improved demand planning accuracy, and time and resource efficiency in 

distribution. Qualitative analysis is conducted through follow-up interviews with 

stakeholders to assess operational impact and acceptance of the proposed model. Based on 

the evaluation results, strategic recommendations are developed for practical implementation 

in energy distribution companies. 

The final stage of the research involves publication and dissemination of the results. The 

final research outcomes will be compiled into a scientific article and published in a non-Q 

Scopus-indexed international journal. Dissemination is also carried out through scientific 

conferences, industry discussion forums, and policy reports directed at government agencies 

and distribution companies. The research output is expected to support the achievement of 

Sustainable Development Goal (SDG) 9: Industry, Innovation, and Infrastructure, as well as 

support the University’s Key Performance Indicators (KPI) in research and industry 

partnerships. 

 
RESULT AND DISCUSSION 
Descriptive Statistics 

During the observation period, the Ultra-Pure Water sales data, covering 60 months or 

240 weeks, showed a minimum value of 18.00 and a maximum value of 42.00, with a standard 

deviation of 5.21, indicating variability in sales. Below is a presentation of the descriptive data 

for the observation period. 

 

Table 1. Descriptive Statistics of Ultra-Pure Water Sales 

Minimum Median Mean Maximum 

18,00 32,00 33,11 42,00 

 

Sales Data Stationarity 
After obtaining the required data, the researcher processed the data starting with a 

stationarity test. Differencing was applied if the data were found to be non-stationary. If the 

data were already stationary, the next steps included order determination, assumption 

testing, model interpretation, and forecasting. From the forecast data, a safety stock analysis 
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was conducted to determine the minimum inventory level for the Ultra Pure Water product. 

The stationarity processing of the sales data was performed using the E-Views 

application, where the data plot graph can be seen in Figure 1. 

 

 

Figure 1. 24-Month Data Plot 
 

The total number of Ultra-Pure Water product sales transactions from the first quarter 

was 1,995 packs. From the plot and subsequent data graph, a stationarity test was conducted 

using the Augmented Dickey-Fuller (ADF) test, resulting in a probability value of 0.0142. 

Using the hypothesis that the probability value = 0.0142 < 0.05, it can be concluded that the 

sales data is already stationary according to the ADF test. 

 

Table 2. Stationarity of Sales Data Using the Augmented Dickey-Fuller Test 

Null Hypothesis: Sales has a unit root 

Exogenous: Constant 

Lag Length: 0 (Automatic - based on SIC, maxlag=10) 

 T-Statistic Prob.* 

Augmented Dickey-Fuller Test Statistic -3.415744 0.0142 

Test Critical Values: 1% level -3.546099  

5% level -2.911730  

10% level -2.593551  

MacKinnon (1996) one-sided p-values. 

 

Since the ADF test shows a p-value of 0.0142, which is less than 0.05, H1 is accepted, 

indicating that the sales data is stationary at this level. The d component of the ARIMA (p, d, 

q) model is 0 because the data is stationary at this level. Subsequent analysis will use ARIMA 

(p, 0, q). 

Next, verify p and q. After obtaining stationary data, determine the order, or degrees, of 

p and q. Calculate the ACF and PACF values to establish the order. For accurate p and q values 

in ARIMA using EViews, create ACF and PACF diagrams using a correlogram. ACF is the 

autocorrelation function, while PACF is the partial autocorrelation function. The ACF 

determines q or MA, and the PACF determines p or AR. 
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Table 3. Sales Data Correlogram 

Lag Autocorrelation 
(AC) 

Partial Correlation 
(PAC) 

Q-Stat Prob 

1 0,475 0,475 29.501 0.000 

2 0,397222222 0,135416667 50.456 0.000 

3 0,302083333 -0.020 62.805 0.000 

4 0,338888889 0,196527778 78.641 0.000 

5 0,320833333 0.070 93.080 0.000 

6 0,295833333 -0.017 105.57.00 0.000 

7 0,270833333 0.078 116.26.00 0.000 

8 0,219444444 -0.090 123.38.00 0.000 

9 0,230555556 0.087 131.42.00 0.000 

10 0,178472222 -0.086 136.36.00 0.000 

11 0,197222222 0.062 142.49.00 0.000 

12 0,194444444 0.099 148.56.00 0.000 

13 0,178472222 0.072 153.79 0.000 

14 0,088194444 -0.190 155.09.00 0.000 

15 0.093 0.024 155.80 0.000 

16 0.082 -0.028 157.00.00 0.000 

17 0.085 -0.037 157.62 0.000 

18 0.014 -0.120 157.70 0.000 

19 -0.010 0.038 157.96 0.000 

20 -0.090 -0.140 158.46.00 0.000 

21 -0.080 0.029 158.64 0.000 

22 -0.080 -0.072 159.96 0.000 

23 -0.140 -0.140 161.14.00 0.000 

24 -0.210 -0.130 165.89 0.000 

25 -0.210 -0.123 168.29.00 0.000 

26 -0.250 -0.057 179.76 0.000 

27 -0.250 0.057 187.22.00 0.000 

28 -0.190 0.080 191.76 0.000 
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The EViews correlogram shows that the autocorrelation function (ACF) diagram on the 

left reaches the limit only at the third lag. At Lag-1 and Lag-2, the values remain outside the 

White Noise range, indicating that the MA or q component in the ARIMA (p, d, q) model 

could be 0, 1, or 2. This differs from the PACF diagram on the right, where the limit occurs at 

the second lag. At Lag-1, the value remains outside the White Noise threshold, while at Lag-

2, it falls within the White Noise range. Consequently, the potential AR or p component ranges 

between 0 and 1. 

 

ARIMA Model Identification 
Next, the ACF and PACF values are used to determine the p and q parameters, leading 

to potential ARIMA (p, d, q) model configurations based on the stationarity test and 

correlogram results, including ARIMA (0,0,1), (0,0,2), (1,0,0), (1,0,1), or (1,0,2). There are five 

potential models that can be developed. Additionally, to select the optimal model among the 

options, an overfitting technique is applied by evaluating each potential model. 

 

ARIMA Model Estimation 
The stationary data indicates that ARIMA model estimation is feasible. The amount of 

differencing required to achieve stationarity corresponds to the d order in ARIMA, which is 

zero in this case. Initial ARIMA model identification is performed considering parsimony 

criteria. The ARIMA (p, d, q) model is used to select the appropriate model, specifically the 

one with the lowest Akaike Information Criterion (AIC) and significance levels close to zero, 

to obtain preliminary ARIMA values. 

 

Table 4. ARIMA Model (0,0,1) 
Dependent Variable: Sales 

Method: Least Squares  

Sample: 20M01 2023M12 

Included observations: 60 

Variable Coefficient Std. Error T-STatistic Prob. 

C 33.11149 0.824776 40.14601 0.0000 

MA (1) 0.469819 0.114152 4.114745 0.0001 

Akaike info 

criterion 

5.816155    

Schwarz 

criterion 

5.885967    

 

Table 5. ARIMA Model (0,0,2) 
Dependent Variable: Sales 

Method: Least Squares  

Sample: 20101 2023M12 

Included observations: 60 

Variable Coefficient Std. Error T-Statistic Prob. 

C 33.12434 0.870879 38.03554 0.0000 

MA (2) 0.518983 0.102819 45.047531 0.0000 

Akaike info 

criterion 

5.863342    

Schwarz criterion 5.934244    
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Table 6. ARIMA Model (1,0,0) 
Dependent Variable: Sales 

Method: Least Squares  

Sample (adjusted): 2M02 2023M12  

Included observations: 60 

Variable Coefficient Std. Error T-Statistic Prob. 

C 33.81901 1.531069 22.08849 0.0000 

AR(1) 0.691096 0.090435 7.641888 0.0000 

Akaike info 

criterion 

5.429396    

Schwarz criterion 5.499821    

 

 

Table 7. ARIMA Model (1,0,1) 
Dependent Variable: Sales 

Method: Least Squares  

Sample (adjusted): 20M02 2023M12  

Included observations: 60 

Variable Coefficient Std. Error T-Statistic Prob. 

C 34.60318 2.211854 15.64442 0.0000 

AR(1) 0.854591 0.084525 10.11045 0.0000 

MA(1) -0.360927 0.164170 -2.198495 0.0321 

Akaike info 

criterion 

5.403269    

Schwarz 

criterion 

5.508906    

 

 

 

Table 8. ARIMA Model (1,0,2) 
Dependent Variable: Sales 

Method: Least Squares  

Sample (adjusted): 20M02 2023M12  

Included observations: 60 

Variable Coefficient Std. Error T-Statistic Prob. 

C 33.72674 1.508681 22.35512 0.0000 

AR(1) 0.629599 0.106543 5.909354 0.0000 

MA(2) -0.206057 0.141789 1.453263 0.1517 

Akaike info 

criterion 

5.419413    

Schwarz 

criterion 

5.525050    

 

Based on the ARIMA model estimation for the Ultra-Pure Water product, the best model 

obtained is ARIMA (1,0,1). 
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Forecasting with ARIMA (1,0,1) 
The dataset used to identify the ARIMA model is applied to project sales in order to 

determine the MAPE value. After selecting the optimal model in this ARIMA study using 

EViews, the next step is to generate forecasts. In this case, sales are projected for the upcoming 

year. The results of the forecast are as follows: 

 

 

Figure 2. ARIMA Forecast Output 
 

The blue line, which represents the projected sales, lies between the two red lines, 

indicating that the forecast is stable. 

 

Model Assumption Analysis 
Next, the assumption tests in this model include normality, autocorrelation, and 

heteroskedasticity. 

 

Normality Assumption 
1. The normality test is then conducted, as shown in the figure below. 

  

 

Figure 3. Normality Test of Data 
 

The Jarque-Bera residual normality test shows a p-value of 0.054784, which exceeds 0.05, 

indicating a normal distribution for the sales data. 
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2. Autocorrelation Assumption 

Next, the autocorrelation test is conducted, as shown in the following figure. 

 

Table 9. Autocorrelation Correlogram 

Lag Autocorrelation 
(AC) 

Partial Correlation 
(PAC) 

Q-Stat Prob 

1 0.010 0.010 0.0067 - 

2 0.062 0.062 1,74166667 - 

3 -0.246 -0.249 41.533 0.042 

4 0.062 0.071 44.038 0,07708333 

5 0,08611111 0,1125 54.246 0,09930556 

6 0.064 -0.017 57.026 0,15416667 

7 -0.157 0,12638889 74.026 0,13333333 

8 -0.090 -0.044 79.723 0,16666667 

9 0.074 0.052 83.627 0,20972222 

10 -0.169 -0.115 10.451 0,16319444 

11 0.008 -0.068 10.455 0,21875 

12 0.090 0,09097222 11.070 0,24444444 

13 0.055 -0.033 11.304 0,29027778 

14 -0.030 0.084 11.378 0,34513889 

15 -0.042 -0.087 11.522 0,39375 

16 0.059 0.066 12.141 0,46388889 

17 0.062 0.066 12.600 0,4875 

18 -0.072 -0.122 12.633 0,49236111 

19 0.045 0.050 15.576 0,43194444 

20 -0.179 -0.170 15.576 0,43194444 

21 0.043 0.066 15.754 0,46805556 

22 0.096 0,11944444 15.649 0,46944444 

23 -0.049 -0.033 16.891 0,49861111 

24 -0.075 -0.100 17.472 0,51180556 

 

Based on the output above, most of the p-values are greater than 0.05, which means the 

model meets the requirements or there is no autocorrelation. 

 

3. Heteroskedasticity Assumption 

Table 10. Heteroskedasticity Correlogram 

 
Lag 

Autocorrelation 
(AC) 

Partial 
Correlation 

(PAC) 

 
Q-Stat 

 
Prob 

1 0,125 0,125 20.078 0,108333333 

2 0.009 -0.024 20.125 0,254166667 
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3 0.095 0,070138889 25.926 0,31875 

4 0.045 0.010 27.258 0,420138889 

5 -0.058 -0.068 29.534 0,490972222 

6 0.029 0.047 30.106 0,561111111 

7 -0.092 -0.120 35.948 0,572916667 

8 -0.133 -0.087 48.499 0,536805556 

9 -0.048 -0.014 50.139 0,578472222 

10 -0.044 -0.030 51.552 0,611805556 

11 -0.044 0.002 52.987 0,638194444 

12 -0.114 -0.117 62.875 0,625 

13 -0.088 -0.050 68.867 0,625 

14 -0.093 -0.077 75.815 0,631944444 

15 -0.064 -0.048 79.171 0,64375 

16 -0.051 -0.036 81.327 0,65625 

17 -0.035 -0.037 82.398 0,667361111 

18 -0.047 -0.039 84.365 0,674305556 

19 -0.036 -0.051 85.556 0,68125 

20 0.063 0.056 89.250 0,683333333 

21 0,129166667 0,104166667 10.184 0,649305556 

22 -0.012 -0.104 12.198 0,666666667 

23 0.064 0.066 12.611 0,672916667 

24 0,106944444 0.075 15.059 0,638194444 

 

The output shows that all p-values exceed 0.05, indicating the absence of 

heteroskedasticity problems. Thus, the model meets the non-heteroskedasticity criteria. 

 

Safety Stock Calculation 
The following explains how to calculate the safety stock value that minimizes stockouts 

while also reducing overall stockout costs, the risk of damage or obsolescence, and additional 

storage costs: 

Safety Stock = SL × FE × √LT  

where: 

SL = Average Sales 

FE = Forecast Error 

LT = Product Lead Time 

Based on the results of this study, the values obtained are:  

SL = 33,11 

FE = 4,043214 

LT = 1 month 

Safety Stock = 33,11 × 4,043214 × √30 

= 733,24 

The daily safety stock is 733,24/ 30 days = 24,44 

By utilizing the data above, it can be concluded that this research object makes decisions, 

particularly regarding the inventory management of Ultra-Pure Water, which requires a 
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minimum threshold of 24.44 units per day to ensure supply availability for the following 

month. 

 

CONCLUSION  
The research findings indicate that sales data are stationary and can be accurately 

modeled using ARIMA (1,0,1), which demonstrated the lowest Akaike Information Criterion 

(AIC) value and satisfied the assumptions of normality, with no signs of autocorrelation or 

heteroskedasticity. This model was then applied to sales forecasting and safety stock analysis. 

The forecasting results provide an estimate of stable distribution requirements, with a 

safety stock value of 733.24 units per month or 24.44 units per day. This figure serves as an 

important reference in determining the minimum inventory threshold to prevent stockouts 

and ensure smooth distribution. 

Thus, the application of Distribution Requirements Planning (DRP) combined with 

quantitative forecasting models such as ARIMA has proven effective in supporting 

distribution decision-making and inventory management. This research contributes to 

developing a more efficient and adaptive energy distribution strategy, particularly in the 

context of subsidized goods such as 3-kg LPG. In addition, this approach supports the 

achievement of the Sustainable Development Goals (SDG 9) by fostering innovation and 

efficiency in the national energy logistics system. 
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