Journal of Information System, Technology and Engineering
Volume 3, No. 3, pp. 524-535

E-ISSN: 2987-6117

http://gemapublisher.com/index.php/jiste

Received: July 2025

Accepted: August 2025

Published: September 2025

Evaluating DRP Implementation for 3 KG LPG
Distribution Efficiency

Alfa Firdaus’, Muhammad Kholil, Selamat Riadi, Atep Afia Hidayat, Indra Almahdy
Universitas Mercu Buana

Correspondence Email: alfa_firdaus@mercubuana.ac.id*

Abstract

This study evaluates the effectiveness of Distribution Requirements Planning (DRP)
integrated with ARIMA time series forecasting to support delivery scheduling decisions and
the determination of minimum inventory levels. As a representative case study, a 60-month
sales series of Ultra-Pure Water was used to simulate fluctuating retail demand across the
agent-depot network. The Augmented Dickey-Fuller test confirmed stationarity (p = 0.0142),
allowing candidate ARIMA (p, 0, q) models to be evaluated using ACF/PACF and
information criteria. The best model was ARIMA (1,0,1), which had the lowest Akaike
Information Criterion and passed diagnostic tests (normal residuals, no autocorrelation, no
heteroscedasticity), making it suitable for operational forecasting. Projection results indicated
a stable demand pattern and yielded a safety stock threshold of 733.24 units/month
(equivalent to 24.44 units/day) as a reference for inventory control. These findings
demonstrate that the DRP-ARIMA integration can enhance supply reliability and distribution
efficiency, particularly for subsidized goods such as 3 kg LPG, with practical implications for
determining adaptive inventory levels, delivery routes and frequency, and upstream-
downstream coordination. Theoretically, this study provides additional empirical evidence
on the use of quantitative forecasting models to operationalize DRP in the energy sector, while
also providing a foundation for replication in other critical commodities.

Keywords: distribution requirements planning, 3 kg LPG distribution, logistics
efficiency, supply chain, energy companies.

INTRODUCTION

The distribution of 3 kg LPG gas is one of the important aspects in the energy industry,
particularly in meeting the needs of households and small businesses in Indonesia. Efficiency
in distribution becomes a key factor in ensuring the availability and price stability of products
in the market. One method that can be applied to optimize distribution is Distribution
Requirements Planning (DRP), a planning approach that focuses on demand forecasting and
systematic inventory management to avoid shortages or excess stock (Ballou, 2004).

The DRP method has been applied in various industries to improve supply chain
efficiency, reduce logistics costs, and increase customer satisfaction (Christopher, 2016). In the
context of 3 kg LPG distribution, this method has significant potential to enhance the
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effectiveness of deliveries from agents to depots and reduce the likelihood of distribution
delays that could affect supply stability (Chopra & Meindl, 2019).

However, the implementation of the DRP method in 3 kg LPG distribution still faces
various challenges, such as infrastructure limitations, demand variability, and strict
government regulations in subsidized goods distribution (Bowersox et al., 2013). Other factors
that need to be considered include the role of technology in supporting DRP implementation
(Simchi-Levi et al., 2007), demand-based distribution planning (Ross, 2015), and an integrated
supply chain planning approach (Stadtler, 2015).

The application of the DRP system also depends on optimal logistics and distribution
management aspects (Rushton et al., 2022), appropriate supply chain strategies (Taylor, 2004),
and the implementation of efficient inventory control systems (Pfohl, 2004). In addition, the
success factors in DRP implementation are also related to coordination between suppliers,
distributors, and retailers (Lambert et al., 1998), as well as the utilization of information
technology in distribution systems (Jonsson, 2008).

From an academic perspective, previous research highlights various challenges and
opportunities in the application of DRP, including in the context of logistics optimization
(Mentzer et al., 2001), inventory control strategies (Axsater, 2015), and the application of
mathematical models in distribution (Ghiani et al., 2013). Other factors of concern include
operational efficiency in distribution management (Slack et al., 2021), the application of lean
concepts in the supply chain (Hopp & Spearman, 2011), and the influence of supply chain
strategies on the competitiveness of the energy industry (Frazelle, 2002).

This study aims to evaluate the implementation of the DRP method in optimizing the
distribution of 3 kg LPG gas in energy companies, both from a theoretical review and its field
application. Using an analytical approach and case study, this research is expected to provide
insights into the advantages and limitations of the DRP method in supporting more efficient
and effective distribution (Chopra, 2019).

Thus, this study will contribute to energy companies in designing better distribution
strategies and to stakeholders in understanding the importance of supply chain optimization
in the distribution of subsidized goods (Waters, 2007).

METHOD

This study employs a mixed-methods approach combining quantitative and qualitative
methods, using case study and simulation techniques, to develop an optimization model for
3 kg LPG distribution based on Distribution Requirements Planning (DRP). The initial stage
of the research focuses on preparation and literature review, which includes systematic
problem and research objective identification, conceptual framework development, and initial
hypothesis formulation. Subsequently, the study collects and reviews scientific literature,
journals, industry reports, and policy documents related to energy distribution, supply chain
efficiency, and the implementation of the DRP method. At this stage, a list of key parameters
and performance indicators to be used in model design is also prepared, along with the
determination of analytical tools and methods, including logistics simulation software.

Data collection is conducted through a combination of secondary and primary data.
Secondary data are obtained from official LPG distribution reports, government statistical
data, energy regulations, and relevant previous publications. Meanwhile, primary data are
collected through in-depth interviews and structured surveys with industry actors, such as
distribution agents, logistics operators, and 3 kg LPG consumers, to gain direct insights into
demand patterns, operational constraints, and actual distribution practices. This approach
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allows the study to gain a comprehensive understanding of the LPG distribution conditions
in the field.

After data collection, the next stage is the design of the DRP optimization model. The
distribution model is designed by integrating DRP principles while considering actual
demand dynamics and distribution capacity. Key variables incorporated into the model
include historical demand data, stock availability, vehicle and warehouse capacity, delivery
schedules, and logistics cost structures. Additionally, several distribution scenarios are
developed to test the model’s flexibility under real conditions, such as demand surges or
supply limitations.

The simulation and model validation stage involves testing the designed model using
logistics software. Validation is conducted by comparing the simulation results with actual
data and conventional scenarios to measure the model’s effectiveness in terms of delivery
accuracy, supply reliability, and cost efficiency. Sensitivity testing is also performed to assess
the model’s response to changes in key input parameters, ensuring that the model can be
adapted to varying operational conditions.

Analysis and evaluation are carried out both quantitatively and qualitatively.
Quantitative analysis includes measuring performance indicators such as total distribution
cost reduction, improved demand planning accuracy, and time and resource efficiency in
distribution. Qualitative analysis is conducted through follow-up interviews with
stakeholders to assess operational impact and acceptance of the proposed model. Based on
the evaluation results, strategic recommendations are developed for practical implementation
in energy distribution companies.

The final stage of the research involves publication and dissemination of the results. The
final research outcomes will be compiled into a scientific article and published in a non-Q
Scopus-indexed international journal. Dissemination is also carried out through scientific
conferences, industry discussion forums, and policy reports directed at government agencies
and distribution companies. The research output is expected to support the achievement of
Sustainable Development Goal (SDG) 9: Industry, Innovation, and Infrastructure, as well as
support the University’s Key Performance Indicators (KPI) in research and industry
partnerships.

RESULT AND DISCUSSION
Descriptive Statistics

During the observation period, the Ultra-Pure Water sales data, covering 60 months or
240 weeks, showed a minimum value of 18.00 and a maximum value of 42.00, with a standard
deviation of 5.21, indicating variability in sales. Below is a presentation of the descriptive data
for the observation period.

Table 1. Descriptive Statistics of Ultra-Pure Water Sales
Minimum Median Mean Maximum
18,00 32,00 33,11 42,00

Sales Data Stationarity

After obtaining the required data, the researcher processed the data starting with a
stationarity test. Differencing was applied if the data were found to be non-stationary. If the
data were already stationary, the next steps included order determination, assumption
testing, model interpretation, and forecasting. From the forecast data, a safety stock analysis

DOI: https://doi.org/10.61487/jiste.v3i3.186



527

was conducted to determine the minimum inventory level for the Ultra Pure Water product.
The stationarity processing of the sales data was performed using the E-Views

application, where the data plot graph can be seen in Figure 1.
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Figure 1. 24-Month Data Plot
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The total number of Ultra-Pure Water product sales transactions from the first quarter
was 1,995 packs. From the plot and subsequent data graph, a stationarity test was conducted
using the Augmented Dickey-Fuller (ADF) test, resulting in a probability value of 0.0142.
Using the hypothesis that the probability value = 0.0142 < 0.05, it can be concluded that the
sales data is already stationary according to the ADF test.

Table 2. Stationarity of Sales Data Using the Augmented Dickey-Fuller Test

Null Hypothesis: Sales has a unit root

Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=10)

T-Statistic Prob.”

Augmented Dickey-Fuller Test Statistic -3.415744 0.0142
Test Critical Values: 1% level -3.546099
5% level -2.911730
10% level -2.593551

MacKinnon (1996) one-sided p-values.

Since the ADF test shows a p-value of 0.0142, which is less than 0.05, H1 is accepted,
indicating that the sales data is stationary at this level. The d component of the ARIMA (p, d,
q) model is 0 because the data is stationary at this level. Subsequent analysis will use ARIMA
(P, 0, 9).

Next, verify p and q. After obtaining stationary data, determine the order, or degrees, of
p and q. Calculate the ACF and PACF values to establish the order. For accurate p and q values
in ARIMA using EViews, create ACF and PACF diagrams using a correlogram. ACF is the
autocorrelation function, while PACF is the partial autocorrelation function. The ACF

determines q or MA, and the PACF determines p or AR.
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Table 3. Sales Data Correlogram

Lag | Autocorrelation Partial Correlation Q-Stat | Prob
(AQ) (PAQ)
1 0,475 0,475 29.501 |0.000
2 0,397222222 0,135416667 50.456 | 0.000
3 0,302083333 -0.020 62.805 | 0.000
4 0,338888889 0,196527778 78.641 | 0.000
5 0,320833333 0.070 93.080 | 0.000
6 0,295833333 -0.017 105.57.00 | 0.000
7 0,270833333 0.078 116.26.00 | 0.000
8 0,219444444 -0.090 123.38.00 | 0.000
9 0,230555556 0.087 131.42.00 | 0.000
10 0,178472222 -0.086 136.36.00 | 0.000
11 0,197222222 0.062 142.49.00 | 0.000
12 0,194444444 0.099 148.56.00 | 0.000
13 0,178472222 0.072 153.79 | 0.000
14 0,088194444 -0.190 155.09.00 | 0.000
15 0.093 0.024 155.80 | 0.000
16 0.082 -0.028 157.00.00 | 0.000
17 0.085 -0.037 157.62 | 0.000
18 0.014 -0.120 157.70 | 0.000
19 -0.010 0.038 157.96 | 0.000
20 -0.090 -0.140 158.46.00 | 0.000
21 -0.080 0.029 158.64 | 0.000
22 -0.080 -0.072 159.96 | 0.000
23 -0.140 -0.140 161.14.00 | 0.000
24 -0.210 -0.130 165.89 | 0.000
25 -0.210 -0.123 168.29.00 | 0.000
26 -0.250 -0.057 179.76 | 0.000
27 -0.250 0.057 187.22.00 | 0.000
28 -0.190 0.080 191.76 | 0.000
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The EViews correlogram shows that the autocorrelation function (ACF) diagram on the
left reaches the limit only at the third lag. At Lag-1 and Lag-2, the values remain outside the
White Noise range, indicating that the MA or q component in the ARIMA (p, d, q) model
could be 0, 1, or 2. This differs from the PACF diagram on the right, where the limit occurs at
the second lag. At Lag-1, the value remains outside the White Noise threshold, while at Lag-
2, it falls within the White Noise range. Consequently, the potential AR or p component ranges
between 0 and 1.

ARIMA Model Identification

Next, the ACF and PACEF values are used to determine the p and q parameters, leading
to potential ARIMA (p, d, q) model configurations based on the stationarity test and
correlogram results, including ARIMA (0,0,1), (0,0,2), (1,0,0), (1,0,1), or (1,0,2). There are five
potential models that can be developed. Additionally, to select the optimal model among the
options, an overfitting technique is applied by evaluating each potential model.

ARIMA Model Estimation

The stationary data indicates that ARIMA model estimation is feasible. The amount of
differencing required to achieve stationarity corresponds to the d order in ARIMA, which is
zero in this case. Initial ARIMA model identification is performed considering parsimony
criteria. The ARIMA (p, d, q) model is used to select the appropriate model, specifically the
one with the lowest Akaike Information Criterion (AIC) and significance levels close to zero,
to obtain preliminary ARIMA values.

Table 4. ARIMA Model (0,0,1)
Dependent Variable: Sales
Method: Least Squares
Sample: 20M01 2023M12
Included observations: 60

Variable Coefficient Std. Error T-STatistic Prob.
C 33.11149 0.824776 40.14601 0.0000
MA (1) 0.469819 0.114152 4114745 0.0001
Akaike info 5.816155
criterion
Schwarz 5.885967
criterion

Table 5. ARIMA Model (0,0,2)
Dependent Variable: Sales
Method: Least Squares
Sample: 20101 2023M12
Included observations: 60

Variable Coefficient Std. Error T-Statistic Prob.
C 33.12434 0.870879 38.03554 0.0000
MA (2) 0.518983 0.102819 45.047531 0.0000
Akaike info 5.863342
criterion
Schwarz criterion 5.934244
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Table 6. ARIMA Model (1,0,0)

Dependent Variable: Sales
Method: Least Squares

Sample (adjusted): 2M02 2023M12

Included observations: 60

Variable Coefficient Std. Error T-Statistic Prob.
C 33.81901 1.531069 22.08849 0.0000
AR(1) 0.691096 0.090435 7.641888 0.0000
Akaike info 5.429396
criterion
Schwarz criterion 5.499821
Table 7. ARIMA Model (1,0,1)
Dependent Variable: Sales
Method: Least Squares
Sample (adjusted): 20M02 2023M12
Included observations: 60
Variable Coefficient Std. Error T-Statistic Prob.
C 34.60318 2.211854 15.64442 0.0000
AR(1) 0.854591 0.084525 10.11045 0.0000
MA(1) -0.360927 0.164170 -2.198495 0.0321
Akaike info 5.403269
criterion
Schwarz 5.508906
criterion
Table 8. ARIMA Model (1,0,2)
Dependent Variable: Sales
Method: Least Squares
Sample (adjusted): 20M02 2023M12
Included observations: 60
Variable Coefficient Std. Error T-Statistic Prob.
C 33.72674 1.508681 22.35512 0.0000
AR(1) 0.629599 0.106543 5.909354 0.0000
MA(2) -0.206057 0.141789 1.453263 0.1517
Akaike info 5.419413
criterion
Schwarz 5.525050
criterion

Based on the ARIMA model estimation for the Ultra-Pure Water product, the best model

obtained is ARIMA (1,0,1).
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Forecasting with ARIMA (1,0,1)

The dataset used to identify the ARIMA model is applied to project sales in order to
determine the MAPE value. After selecting the optimal model in this ARIMA study using
EViews, the next step is to generate forecasts. In this case, sales are projected for the upcoming
year. The results of the forecast are as follows:
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Figure 2. ARIMA Forecast Output

The blue line, which represents the projected sales, lies between the two red lines,
indicating that the forecast is stable.

Model Assumption Analysis
Next, the assumption tests in this model include normality, autocorrelation, and
heteroskedasticity.

Normality Assumption
1. The normality test is then conducted, as shown in the figure below.
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Figure 3. Normality Test of Data

The Jarque-Bera residual normality test shows a p-value of 0.054784, which exceeds 0.05,
indicating a normal distribution for the sales data.
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2. Autocorrelation Assumption
Next, the autocorrelation test is conducted, as shown in the following figure.

Table 9. Autocorrelation Correlogram

Lag | Autocorrelation Partial Correlation Q-Stat Prob
(AQ) (PAQ)
1 0.010 0.010 0.0067 -
2 0.062 0.062 1,74166667 -
3 -0.246 -0.249 41.533 0.042
4 0.062 0.071 44.038 | 0,07708333
5 0,08611111 0,1125 54.246 |0,09930556
6 0.064 -0.017 57.026 |0,15416667
7 -0.157 0,12638889 74.026 |0,13333333
8 -0.090 -0.044 79.723  0,16666667
9 0.074 0.052 83.627 |0,20972222
10 -0.169 -0.115 10451 |0,16319444
11 0.008 -0.068 10.455 0,21875
12 0.090 0,09097222 11.070 | 0,24444444
13 0.055 -0.033 11.304 |0,29027778
14 -0.030 0.084 11.378 |0,34513889
15 -0.042 -0.087 11.522 0,39375
16 0.059 0.066 12141 | 0,46388889
17 0.062 0.066 12.600 0,4875
18 -0.072 -0.122 12.633 |0,49236111
19 0.045 0.050 15.576 |0,43194444
20 -0.179 -0.170 15.576 | 0,43194444
21 0.043 0.066 15.754 | 0,46805556
22 0.096 0,11944444 15.649 | 0,46944444
23 -0.049 -0.033 16.891 |0,49861111
24 -0.075 -0.100 17.472 | 0,51180556

Based on the output above, most of the p-values are greater than 0.05, which means the

model meets the requirements or there is no autocorrelation.

3. Heteroskedasticity Assumption
Table 10. Heteroskedasticity Correlogram

Autocorrelation| Partial
Lag (AC) Correlation Q-Stat Prob
(PAC)
1 0,125 0,125 20.078 0,108333333
0.009 -0.024 20.125 0,254166667
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3 0.095 0,070138889 25.926 0,31875
4 0.045 0.010 27.258 0,420138889
5 -0.058 -0.068 29.534 0,490972222
6 0.029 0.047 30.106 0,561111111
7 -0.092 -0.120 35.948 0,572916667
8 -0.133 -0.087 48.499 0,536805556
9 -0.048 -0.014 50.139 0,578472222
10 -0.044 -0.030 51.552 0,611805556
11 -0.044 0.002 52.987 0,638194444
12 -0.114 -0.117 62.875 0,625
13 -0.088 -0.050 68.867 0,625
14 -0.093 -0.077 75.815 0,631944444
15 -0.064 -0.048 79.171 0,64375
16 -0.051 -0.036 81.327 0,65625
17 -0.035 -0.037 82.398 0,667361111
18 -0.047 -0.039 84.365 0,674305556
19 -0.036 -0.051 85.556 0,68125
20 0.063 0.056 89.250 0,683333333
21 0,129166667 | 0,104166667 10.184 0,649305556
22 -0.012 -0.104 12.198 0,666666667
23 0.064 0.066 12.611 0,672916667
24 0,106944444 0.075 15.059 0,638194444

The output shows that all p-values exceed 0.05, indicating the absence of
heteroskedasticity problems. Thus, the model meets the non-heteroskedasticity criteria.

Safety Stock Calculation

The following explains how to calculate the safety stock value that minimizes stockouts
while also reducing overall stockout costs, the risk of damage or obsolescence, and additional
storage costs:
Safety Stock = SL x FE x VLT

where:
SL = Average Sales
FE = Forecast Error
LT = Product Lead Time
Based on the results of this study, the values obtained are:
SL = 33,11
FE =4,043214
LT =1 month
Safety Stock = 33,11 x 4,043214 x \30
=733,24

The daily safety stock is 733,24/ 30 days = 24,44
By utilizing the data above, it can be concluded that this research object makes decisions,
particularly regarding the inventory management of Ultra-Pure Water, which requires a
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minimum threshold of 24.44 units per day to ensure supply availability for the following
month.

CONCLUSION

The research findings indicate that sales data are stationary and can be accurately
modeled using ARIMA (1,0,1), which demonstrated the lowest Akaike Information Criterion
(AIC) value and satisfied the assumptions of normality, with no signs of autocorrelation or
heteroskedasticity. This model was then applied to sales forecasting and safety stock analysis.

The forecasting results provide an estimate of stable distribution requirements, with a
safety stock value of 733.24 units per month or 24.44 units per day. This figure serves as an
important reference in determining the minimum inventory threshold to prevent stockouts
and ensure smooth distribution.

Thus, the application of Distribution Requirements Planning (DRP) combined with
quantitative forecasting models such as ARIMA has proven effective in supporting
distribution decision-making and inventory management. This research contributes to
developing a more efficient and adaptive energy distribution strategy, particularly in the
context of subsidized goods such as 3-kg LPG. In addition, this approach supports the
achievement of the Sustainable Development Goals (SDG 9) by fostering innovation and
efficiency in the national energy logistics system.
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