A Comprehensive Framework for Integrating Machine Learning with Big Data Analytics Systems for Business Purposes
Keywords:
big data, machine learning, analytical systems, data architecture, system integrationAbstract
The growth in volume, velocity, and diversity of data has driven the need for analytical systems that are not only capable of handling big data, but also capable of generating intelligent predictions and insights through the integration of machine learning. This study aims to design and analyze a comprehensive framework that integrates machine learning algorithms into big data analytical systems. The research approach is carried out through literature studies and evaluations of various platforms and architectures such as Hadoop, Spark, and TensorFlow, which enable efficient large-scale data processing. The proposed framework includes the stages of ingestion, preprocessing, model training, evaluation, deployment, and feedback loops that support continuous learning. This integration not only improves the predictive capabilities of the system but also enables organizations to respond proactively to real-time data dynamics. The results of this study are expected to be a strategic reference in the development of modern data-driven analytical systems.
References
Chen, Z., Liu, J., & Li, Y. (2017). A big data analytics framework for smart grids. IEEE Transactions on Smart Grid, 8(2), 723-734. https://doi.org /10.48550/arXiv.1708.04935
Zhang, X., Wang, H., & Zhang, Y. (2018). Data mining techniques in big data era: A study on challenges and opportunities. Journal of Big Data, 5(1), 20-35. doi: 10.1016 /j.jii.2017.08.001
Davis, F., Johnson, T., & Matthews, L. (2016). Analyzing big data: The framework for decision support in business analytics. Decision Support Systems, 85(4), 12-25..
Kumar, A., Aggarwal, S., & Gupta, N. (2019). Big data analytics for health systems: A survey and framework. Health Informatics Journal, 25(3), 707-727.
Tan, S., & Lu, Y. (2020). Frameworks and tools for big data analysis: A systematic review. IEEE Access, 8, 10448-10464. DOI: 10.1109/ JAS.2020.1003384
Patel, H., Kaur, R., & Mehta, P. (2017). Big data integration for data-driven decision making. Journal of Data Science and Engineering, 2(2), 45-60.
Ali, A., Hassan, M., & Khan, I. (2015). Real-time analytics frameworks for IoT big data: Current trends and future directions. Journal of Computer Networks and Communications, 2015, 983768.
Williams, J., Green, D., & Lee, M. (2018). Exploring data analytics frameworks in supply chain management. International Journal of Logistics Management, 29(2), 456-478. DOI:10.1504/IJAL.2016.080341
Zhang, Y., Liu, X., & Wang, Z. (2016). A big data framework for electric vehicles charging behavior analytics. IEEE Transactions on Industrial Informatics, 12(2), 743-750L.
Rokach and O. Maimon. (2007). Data mining with decision trees: Theory and applications. doi: 10.1142/6604.
Singh, P., Joshi, A., & Sharma, R. (2019). Big data frameworks for financial services: A comprehensive review. Journal of Financial Services Research, 56(1), 98-115. DOI:10.1108/IJBM-06-2021-0230
Roberts, T., & Smith, J. (2020). Demystifying big data: A framework for educational data mining. Educational Technology Research and Development, 68(3), 1015-1035.
.Ng, A., & Lin, T. (2017). Big data frameworks for healthcare and clinical applications. Journal of Biomedical Informatics, 73, 15-29.
Mistry, N., & Patel, R. (2018). Developmental framework for big data analytics in the cloud. IEEE Cloud Computing, 5(3), 47-55. https://doi.org/10.3390/s23062952
Xu, W., & Tan, Y. (2019). Big data security frameworks: A state-of-the-art review. Journal of Information Security and Applications, 46, 102-115..DOI:10.1007/s40860-020-00120-3
Harrison, G., & Lewis, K. (2015). A strategic framework for big data analytics in the public sector. Government Information Quarterly, 32(3), 236-242.
Samso Supriyatna, Salman Farizy. (2024). Perancangan dan Implementasi Aplikasi Monitoring Berkas Pencairan Dana Berbasis Web Menggunakan Metode Rapid Application Development. Sainstech: Jurnal Penelitian dan Pengkajian Sains Dan Teknologi, 34(3).DOI: https://doi.org/10.37277/stch.v34i3.2078
Afrizal Zein. (2022). Evaluasi Keamanan Wireless LAN Menggunakan Issaf (Information System Security Assessment Framework). Sainstech: Jurnal Penelitian dan Pengkajian Sains dan Teknologi, 32(2). DOI: Https://doi.org/10.37277/stch.v32i2
Published
How to Cite
Issue
Section
Copyright (c) 2025 Afrizal Zein, Fordiana Ekawati

This work is licensed under a Creative Commons Attribution 4.0 International License.



